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THERMODYNAMIC AND STRUCTURAL 
INTERPRETATIONS OF THE UNDERCOOLED 

LIQUID METALS 

R. N. SINGH* and F. SOMMER 

Max-Planck-Institut fur Metallforschung, Institut fur Werkstogwissenschaft, Seestr. 7 5 ,  
0-701 74 Stuttgart, Germany 

(Received 7 July 1993) 

A simple scheme based on pseudopotential and hard sphere results is used to evaluate the specific heat in the 
undercooled region ( T <  T,,,) and in the higher temperature region (T > T,,,) of liquid metals Na, K, Rb and 
Cs. The structure dependent part of the specific heat is found to increase in the undercooled region (T< T,) 
with decreasing temperature and exhibits an inflection at a given temperature (TI). The results are discussed 
in the light of energetics and direct correlation function. We have also computed the diffusion coefficients 
which show T2-dependence in the undercooled region. 

KEY WORDS Specific heat, diffusion coefficient. 

1 INTRODUCTION 

It is becoming increasingly evident that the temperature dependent thermodynamic 
functions should better be used to analyse the energetics as well as the configurational 
details of the liquid metals, particularly, in the undercooled (TK T,, T,,, is the melting 
temperature) and also in the very high (T >> T,) temperature region. For example, C ,  
(specific heat at constant pressure) of liquid metals having high melting points 
(T,  > 900K) remains constant [l] over a wide range of temperatures above T,,,, 
whereas C,  increases with decreasing temperature in the undercooled region and in 
a small temperature range above T ,  for several metals with T ,  < 900 K [Z]. 

Then the obvious points that needed to be addressed are (i) what happens in the 
undercooled region and in the very high temperature region, (ii) whether these 
informations could be used to analyse the energetics and the structure of the under- 
cooled metastable state. Due to extreme experimental conditions, a direct measure- 
ment of any of the physical quantities of interest is enormously difficult and, therefore, 
a theoretical analysis is very much useful. Nevertheless, such investigations are of 
primary importance to understand the physical processes that are linked to metallic 
glass formation [3-61 or phenomenon of rapid solidification [7-91. 

In the present work we make use of a theoretical scheme to address the above 
mentioned points. It is based on pseudopotential perturbation theory, the thermo- 
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130 R. N. SINGH AND F. SOMMER 

dynamics of hard sphere systems and the variational method based on Gibbs- 
Bogoliaubov inequality. This has been proved extremely successful to discuss the 
physical processes associated with s-p bonded liquid metals near the melting point 
(for recent review see Young [lo]). Here we apply it to extract informations in the 
undercooled region with special emphasis to C,, the static structure factor S(q)  and the 
diffusion coefficient (D). The necessary theoretical scheme is outlined in section 2, while 
section 3 contains the results and discussion for C,. It follows a short discussion on 
structure factor in section 4. The results for D are provided and discussed in section 5. It 
follows a short conclusion. 

2 THEORY 

The heart of the problem is to establish a successful link between the pseudopotential, 
the structure and the thermodynamic function. The variational method 11 13 based on 
Gibbs-Bogoliaubov inequality paves the way, i.e. 

( E)*,T = O 

where F is the Helmholtz free energy at a given temperature T and the volume R of the 
system. c is the hard sphere diameter. F can be expressed as 

F = E - T S  (2) 

E is the internal energy and S is the entropy at T. For simple s-p bonded liquid metals, 
one can safely express, 

E = ‘elec + ‘elec-ion + ‘ion (3) 

Eelec is the energy of the homogeneous electron gas which is the sum of the kinetic 
energy of electrons, exchange energy, correlation energy and the low temperature 
specific heat contribution for the electron gas. By adding them together, one writes 

3 
- 0.0474 - 0.0155 In K F  - - ( - nKB)i T2} (4) 

K F  

K ,  is the fermi wave vector (K: = 3n2z/R, z is the valency, and R is the atomic volume), 
and K B  is the Boltzmann constant. The contribution, Eelec.ion, which arises due to 
electron-ion interaction has been evaluated in the framework of pseudopotential 
perturbation theory [ 123, i.e. 
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UNDERCOOLED LIQUID METALS 131 

where q is the wave vector. The first term on right-hand side is the first order energy and 
second is the band structure energy. Wo(q) is the unscreened form factor and is obtained 
by taking the Fourier transform of the r-space potential seen by conduction electrons 
in the presence of ions. 

In past a great effort has been made to model the electron-ion potential. Presently 
we consider the Heine-Abarenkov (HA) [13] form of model potential Wo(r), which 
consists of a well-depth (A) for the core region r < r,, r, is the chosen model radius and 
it is Coulombic( - z/r) in nature in the outside region (r > r,). This is preferable because 
it has rigorous theoretical foundation (see Cohen and Heine [14]) and also the model 
parameters(A, r,) occurring here are not fitted to any of the observed properties but are 
determined independently by matching the wave functions [ 151. The Fourier trans- 
form of W,(r) becomes 

4nz 4nA 
Wo(q) = - R ~ Z  cos qr, - - {sin qr, - qr, cos qr,} 

a13 

c*(q) in Eq. ( 5 )  is the modified Hartree dielectric screening function which takes into 
account of the conduction electrons interaction, 

c(q)  is the Hartree dielectric function and G(q) is the correction term for the exchange 
and correlated motion of the conduction electrons. We use here the modified Hubbard 
formula, i.e. 

The function y has been introduced to satisfy the compressibility sum rule. By making 
use of the interpolation scheme of Nozier and Pines [16], y is given [17] by 

2n 
= nK, + 0.153 (9) 

The structure factor, S(q) ,  for liquid metals appearing in Eq. ( 5 )  can be calculated [l8] 
from the Percus-Yevick solution for hard sphere fluids which is characterized by the 
hard sphere diameter (a) or, equivalently, by the packing fraction q = (7c/6!2)a3. S ( q )  
also occurs as the basic input to calculate [ 111 energy, Eion, i.e. 

The same q which is required for the calculation of S ( q )  can readily be used to evaluate 
the entropy, S,  of the hard sphere fluids, i.e. 
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132 R. N. SINGH AND F. SOMMER 

Table 1 Coefficients for Na, K ,  Rb and Cs. 

Metal a0 a1 a2 a3 a4 
x lo-' x 10- '0  x 10- 14 

Na 0.643 - 6.831 6.327 - 3.286 5.158 
K 0.634 - 8.067 9.240 - 6.633 19.48 1 
Rb 0.678 - 12.939 23.433 - 25.418 112.187 
cs 0.614 - 12.453 23.217 - 25.876 116.477 

with 

Sgas = - K ,  5 + K,ln { R ( 2 ' ~ ~ B T ) 3 ' 2 }  

2 

Here m is the atomic mass and h is the Plancks constant. The purpose of the present 
scheme is evident by now. Equation ( 1 )  establishes a link between the structure, the 
potential and the thermodynamic function through the packing fraction g. At each 
temperature, the optimisation condition (1) has been carried out repeatedly to ensure 
minimum Helmholtz free energy for the system with respect to o and hence the packing 
fraction r] .  The densities appropriate to pure liquid metals at relevant temperatures 
have been calculated from Smithels [19] metal book. The values of g computed for Na, 
K, Rb and Cs are then represented as a power series in terms of temperature Tin  the 
form 

g =a, +a ,  T+ a,T2 + a3T3 + a4T4 (15) 

where a,, a,, a2, a3 and a4 are coefficients and are tabulated in Table 1 .  A similar q - T 
dependence has also been used [20] successfully to calculate the enthalpy and the 
compressibility of liquid alkali metals above T,. 

3 SPECIFIC HEAT 

Once the T-dependence of g is established, then the specific heat C ,  can be calculated, 
as 

C ,  = T( g) 
P 

In view of Eq. (1 l) ,  one writes 
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UNDERCOOLED LIQUID METALS 133 

with 

( z), C:= -2KBT(2-q)(1 - v ) - ~  

Here ct is the thermal coefficient of expansion. The values of C, for Na, K, Rb and Cs 
computed for both high (T > T,) and undercooled region (T < T,) are displayed in 
Figure 1. Above T,, C, of Na, K, Rb, Cs decreases with increasing temperature. In the 
undercooled ( T <  T,) region, however, C, increases with decreasing temperature till it 
reaches a point of inflection in C,. Other theoretical investigations [21] also suggest 
a anomaly in C ,  at a particular temperature in Ga, T1 and Ti. 

The increasing tendency of C, in the undercooled region has, in particular, been 
noticed experimentally for several low melting metals (e.g. indium, tin and bismuth 
[221). 

T, K 

Figure 1 
high temperature range (T> T,,,) for liquid alkali metals: Na(AA), K(AA), Rb ( 0 0 )  and Cs (w). 

Specific heat at constant pressure. C, (cal K - '  g-atom- I )  in the undercooled (T< T,) and in the 
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134 R. N. SINGH AND F. SOMMER 

The gradient of C ,  in the undercooled region and the temperature ( T I )  at which C ,  
undergoes inflection seem to be related to the melting temperature (T,) of the metal. 
For example, Rb and Cs having lower T,  exhibit larger gradient in C ,  than Na or 
K. Similarly, the inflection temperatures for Na ( T, N 245 K, T,  = 371.0) and K (TI = 
225 K, T,  = 336.86) are closer to the respective T,,, than that in case of Rb ( T ,  N 115 K, 
T,,, = 312.47 K) and Cs (T, = 125 K, T,  = 301.59 K). 

The inflection in C, should better be understood by considering all the three 
contributions C r ,  C: and C: separately. As an example, C r  and C: as a function of 
T for Na is plotted in Figure 2. C: has not been plotted because it is very small in 
comparison to C y  and C: and also rises linearly with T. It is evident from Figure 2 that 
the inflection in C ,  as well as the characteristic behaviour of C ,  in the undercooled 
region arise due to structural contribution Ci. In particular, the inflection in C, might 
be a signature ofthe configurational transformation at T, and possibly could be viewed 
as structural freezing. This happens as an outcome of a suitable blending of tj and 
(dq/d7'). The latter varies significantly around T,. In the light of above discussion any 

5 2  

4.8 

k - 4.0 8 
a 
0 

3.6 

3.2 

200 400 600 
T. K 

Figure 2 Contributions to specific heat of Na from structural term [C!] and the gas term [ C r ] .  
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UNDERCOOLED LIQUID METALS 135 

extrapolation in the undercooled region beyond TI has, as such, no physical signifi- 
cance. The loss of entropy due to increasing C, leads to a negative entropy difference 
(AS) between the undercooled liquid and the stable crystalline state at finite tempera- 
ture which was first pointed out by Kauzman [23]. This apparent paradox is averted by 
glass formation. The temperature at which AS = 0 is called ideal glass temperature( To), 
i.e. 

AS, is the entropy of melting at T,. The calculated To values for Na, K, Rb and Cs 
liquid metals using the CL-values given in Figure 1 come out to be lower to 
TI (To(Na) = 126 K, T,(K) = 102.5 K) for Na and K but closer ( To(Rb) = 132.5 K, 
To(Cs) = 125 K) for Rb and Cs. From this point of view a calculated Ck value below To 
has also no physical meaning. 

The inflection in C, can also be understood by considering a deviation from the 
nonlinearity of the energy (E = E,, + Eel.ion + E,,,) function. Among these contribu- 
tions, E,, is negative and its magnitude decreases with decreasing T. Similarly the ionic 
contribution, Eion, is negative but its magnitude keep increasing with decreasing T i n  
the undercooled region. The electron-ion contribution, is positive and its 
magnitude also increases with decreasing temperature. Around T,, E,, and Eel.ion al- 
most cancel each other and thereby the enthalpy function is dominated by the ionic 
contribution Eion. But in the undercooled region the repulsive contribution due to 
Eel-ion starts playing effective role and contributes significantly to E. So the inflection 
temperature TI is an outcome of the interplay of the repulsive energy (Eel.ion) and the 
attractive energy (Eion). We may emphasize that both Eion and are structure 
dependent terms. We intend to persue this point later in the forthcoming publication. 

4 STRUCTURE FACTOR 

It is of interest to present here the results of the structure factor S ( q )  in the undercooled 
region. The values of S ( q )  computed for Na is plotted in Figure 3. The effect of 
temperature on S ( q )  around the principal maximum below the melting point is self 
evident. As we undergo the T,, the peaks tend to become sharper and narrower. The 
peak height increases whereas its width decreases on lowering the temperature. Besides, 
the temperature effect in the undercooled region is distinctively visible on the long 
wavelength limit of the direct correlation function, C (q +O) .  S ( q )  is directly related to 
C(q),  i.e. 

In the long wavelength limit, one simply has 

S ( q  -+ 0) = { 1 - c (q  -+ 0) } - (23) 
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136 R. N. SINGH AND F. SOMMER 

Figure 3 Static structure factor, S(q)  of liquid Na in the undercooled region. 

The Percus-Yevick (PY) hard-sphere expression for the long wave-length limit of the 
structure factor is readily expressible in terms of packing fraction q, i.e. 

Therefore, C(q .+ 0) becomes 

Bhatia and March [24] have further noted that for PY solution, C(q+O)  and 
C(r + 0) are simply related to, 

The values of S(4 40)  and C(4+0)  obtained for Na are displayed in Figure 4. It 
suggests that the gradient of C ( 4  -+O) becomes quite steep in the undercooled region. 
The direct correlation function rises sharply and thereby indicating a highly correlated 
system around T,. 
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UNDERCOOLED LIQUID METALS 137 

-100 

- 20 

0 200 LOO 600 
T, K 

Figure 4 
S(q) in the undercooled (T < T,) and high temperature (T  > T,) range of liquid Na. 

Long wavelength (q -0) values of the direct correlation function, C(q) and the structure factor, 

5 DIFFUSION 

It should be useful to investigate the influence of the temperature dependent structural 
parameter ( q )  on the diffusion coefficient (D). It has always been a subject of consider- 
able interest to describe the temperature dependence of D for liquid metals both from 
the experiment [25] and by using simple theoretical models. In fact, it was shown 
[26] that the diffusion data of many liquid metals, above T > T,, can adequately be 
described by considering the T-dependence of the packing fraction. In terms of q, D can 
be expressed as [27] 

1 xK, T ''' 6R ' I 3  ( I  - q) j  D rl =- 1 6 ( m )  (3) (1 -0 .5~ )  

Though Eq. (27) yields diffusion data of reasonable order of magnitude, it is somewhat 
larger than the observed data near the melting temperature. For dense hard sphere 
fluids, the discrepancies could be understood by considering a back scattering effect. 
For dense packing, one may imagine a cage-like structure of an atom which prevents 
a free movement after the binary encounter occurs. After making necessary correction, 
one may write. 

D = B(1) h (28) 

where p(q) is the correction factor for cage-type structure. The results of computer 
experiments [28, 291 suggest that b(q) = 0.33/q in the neighbourhood of q = 0.46. 
Taking this into account and that of Eq. (27), the temperature dependence of D is 
calculated. The calculated values of D indicate a T2 dependence in the undercooled 
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138 R. N. SINGH AND F. SOMMER 

region. It may be recalled here that the spacelab-flight microgravity experiment also 
exhibit TZ dependence for D for liquid metals particularly in Sn [30]. 

As an example, the results of Na computed with Eqs. (27) and (28) are plotted in 
Figure 5. These are compared with the experimental observations [31] which in 
a narrow region of temperature, T 2  T,, have been approximated by the expression 

where Do is a constant and Q is the activation energy. A good attempt has been made by 
different experimental workers to obtain consistent values for Do and Q for liquid Na 
i.e. D o =  1.1 x 10-3cm2s-', Q =  10.2kJmol-', [Meyer and Nachtrieb [32]], 
Do = 0.92 x cmz s-  ', Q = 9.79 kJ mol- ' [Ozelton and Swalin [33]] and Do = 
0.86 x cmz s- ', Q = 9.29 kJ mol- ' [Larsson, Roxberg and Lodding [31]]. The 
different sets of constants give a closer value for D near the melting point but the 
discrepancy increases as one goes T >  T,. Since the Larson et al. [31] values lie in 
between the other two values, we have plotted them in Figure 5 .  

The values obtained for Na from the theoretical expression (28) is in very good 
agreement with the experimental observation near the melting temperature. As ex- 
pected, the discrepancy increases at temperatures T >  T,. It is interesting to observe 
that the values of D computed at T >  T ,  with uncorrected Eq. (27) are in better 
agreement with the observed values than that due to Eq. (28). It seems that the Eq. (28) 
underestimates the values of D at higher temperature. This happens due to correction 
factor b(q). At higher temperature, the correction for cage-like structure which restricts 
the free movement of atom might not be needed. In this context, we may also recall from 
Figure 4 that the direct correlation function C(q + 0) decays exponentially to a bare 

N 

5 - 6 '  
0 

2 '  

0 

0 100 200 300 
10-~ T ~ ,  u2 

Figure 5 Diffusion coefficient, D(cm2 s- I),  for liquid Na as a function of T2, 000 due the equation (27), 
due to Eq. (28) and AAA refers to experimental empirical Eq. (29). 
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UNDERCOOLED LIQUID METALS 139 

minimum in the high temperature region. In the light of above discussion, a computer 
based simulation could be useful for both undercooled and high temperature range of 
liquid metals. 

6 CONCLUSION 

A theoretical scheme based on pseudopotential perturbation theory, the ther- 
modynamics of hard sphere systems and the variational method under Gibbs- 
Bogoliaubov inequality condition is proposed to calculate the specific heat and the 
diffusion coefficients of liquid metals (Na, K, Rb, Cs) in the undercooled region. The 
investigations suggest that 

(i) C, in the undercooled (T< T,) region increases with decreasing temperature till it 
reaches a point of inflection at T= TI. The inflection temperature (TI)  occurs due to 
structural contribution and has been interpreted as a signature of configurational 
freezing. The direct correlation function rises sharply and thereby indicating a highly 
correlated system around TI.  

(ii) D in the undercooled region exhibit T2 dependence. 
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